本篇文章给大家谈谈标准方差,以及标准方差怎么算对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、标准方差的计算公式
- 2、标准方差是什么?
- 3、什么是标准方差,公式是?
标准方差的计算公式
标准差的计算公式:
标准差,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近)。
标准差是离均差平方和平均后的方根,用σ表示。假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值(算术平均值)为μ,公式如图:
扩展资料:
标准误表示的是抽样的误差。因为从一个总体中可以抽取出无数多种样本,每一个样本的数据都是对总体的数据的估计。标准误代表的就是当前的样本对总体数据的估计,标准误代表的就是样本均数与总体均数的相对误差。
标准误是由样本的标准差除以样本容量的开平方来计算的。从这里可以看到,标准误更大的是受到样本容量的影响。样本容量越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表总体。
参考资料来源:百度百科-标准差
标准方差是什么?
标准差(Standard Deviation) ,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。
标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
扩展资料:
标准差在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
什么是标准方差,公式是?
标准方差的计算公式是:
每一个数与这个数列的平均值的差的平方和,除以这个数列的项数,再开根号
分析:
标准方差主要和分母(项数)、分之(偏差)有直接关系
这里的偏差为每一个数与平均值的差.
几个适用的理
1.数据分布离平均值越近,标准方差越小;数据分布离平均值越远,标准方差越大.
2.标准方差为0,意味着数列中每一个数都相等.
3.序列中每一个数都加上一个常数,标准方差保持不变的
4.序列中每一个数都乘以不为0的数N,标准方差扩大N倍
标准方差的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于标准方差怎么算、标准方差的信息别忘了在本站进行查找喔。
发表评论