本篇文章给大家谈谈变异系数法,以及变异系数法公式对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、客观赋权法
- 2、变异系数计算公式是什么?
- 3、变异系数法的简介
- 4、变异系数怎么计算
客观赋权法
客观赋权法主要有变异系数法、熵值法和多元统计分析法,其原始数据来自评估矩阵的数据。它的基本原理是利用指标的观测值进行赋权,权重的确定完全由统计数据得出。这类方法切断了权重系数的主观性来源,使系数具有绝对的客观性,但却容易出现 “重要指标的权重系数小而不重要指标的权重指标系数大”的不合理现象。
(一)变异系数法
变异系数法的基本思想是:在通过指标体系进行评估时,指标体系中各指标所包含的信息量不同,即各指标对被评估对象的区分能力不同。一般来讲,如果一个指标能够明确区分其他指标,则该指标与其他指标的差异大,说明该指标包含的信息量大,应该赋予该指标较大的权重;反之,则应赋予较小的权重。在统计学中,指标的变异信息量常用方差衡量,但由于指标量纲和数量级的差异,各指标的方差不具有可比性。因此,选用各指标的变异系数作为衡量指标变异信息量大小的指标。将各指标的变异系数做归一化处理,就可得到各指标的权重。具体过程如下:
设指标体系由m个指标组成,有n个参评样本,计算出各指标的均值和方差:
地质资料社会化服务评估研究
则各指标的变异系数为:
地质资料社会化服务评估研究
对Vi做归一化处理,即可得出各指标的权重wi
地质资料社会化服务评估研究
(二)熵值法
熵是信息论中测量不确定性的量,信息量越大,不确定性就越小,熵也就越小。反之,信息量越小,不确定性就越大,熵也就越大。熵值法就是用指标熵值来确定权重大小的方法。一般的,将评估对象集记为{Ai}(i=1,2,…,m),用于评估的指标集记为{Xj}(j=1,2,…,n),用xij表示第i个方案第j个指标的原始值。熵值法的计算过程为:
(1)将xij做正向化处理,并计算第j个指标第i个方案所占的比重pij
地质资料社会化服务评估研究
(2)计算第j个指标的熵值ej
地质资料社会化服务评估研究
(3)计算第j个指标的差异系数gj
地质资料社会化服务评估研究
(4)计算第j个指标的权重wj
地质资料社会化服务评估研究
熵值法是突出局部差异的权重计算方法,是根据同一指标观测值之间的差异程度来反映其重要程度的。这种方法,有时可能造成重要指标的权重系数小而不重要指标的权重系数大的不合理现象。
(三)多元统计分析法
多元统计分析法是处理多变量数据的有力工具,在构建评估指标体系的权重时,主要使用到主成分分析法和因子分析法。
1.主成分分析法(Principal component analysis)
用主成分分析法进行多指标综合评价的基本原理是通过适当的数学变换使新的指标成为原有指标的线性组合,并用较少的指标(主成分)代替原有指标,主成分之间相互独立。可以证明:指标的协方差矩阵的第k个特征值等于第k个主成分的方差(k=1,2,…,n);其对应的特征向量是第k个主成分的相应系数;并且主成分按照方差大小顺序排列。因此,第一主成分代表原有指标的信息最多,第二主成分次之,根据此原理,利用主成分能构造综合指数。
主成分分析确定权重的步骤如下:
(1)原始指标数据标准化;
(2)计算指标间的相关系数矩阵R;
(3)计算R的特征根和特征向量;
(4)根据主成分的方差贡献率 确定主成分个数p;
(5)将p个主成分综合为综合指数。
2.因子分析法(Factor analysis)
用因子分析法确定权重的原理是:从所研究的全部原始变量中,将有关信息集中起来,通过讨论相关矩阵的内部依赖关系,将多指标综合成少数因子(综合指标),再现指标与因子之间的相关关系,并进一步分析这些相关关系的内部原因。因子分析法确定权重的步骤是:
(1)原始指标数据标准化;
(2)计算指标间的相互关系矩阵R;
(3)计算R的特征根和特征向量;
(4)根据方差贡献率 (α一般取85%)确定特征根的个数和和相应的特征向量Ui(i=1,2,…,m),利用m个特征值和特征向量建立初始因子载荷矩阵 ;
(5)建立因子模型:
地质资料社会化服务评估研究
式中f1,f2,…,fm为公共因子;ξ为特殊因子。
(6)对初始因子载荷矩阵进行旋转变换,使载荷矩阵结构简单,关系明确。如果初始因子间不相关,采用方差进行极大正交旋转;如果因子间有相关关系,则进行斜交旋转。通过旋转得到比较理想的因子在乎矩阵Al=(ai,j)n×m;
(7)将因子表示为变量的线性组合,由最小二乘法估计求出因子得分系数矩阵:
地质资料社会化服务评估研究
(8)确定权重。指标xj的权重是 其中 为方差贡献率,将βi归一化为xj的权重。
变异系数计算公式是什么?
变异系数的计算公式为:变异系数 C·V =( 标准偏差 SD / 平均值Mean )× 100%变异系数只在平均值不为零时有定义,而且一般适用于平均值大于零的情况。变异系数也被称为标准离差率或单位风险。
变异系数法的简介
标准差与平均数的比值称为变异系数,记为C.V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。
标准变异系数是一组数据的变异指标与其平均指标之比,它是一个相对变异指标。
变异系数有全距系数、平均差系数和标准差系数等。常用的是标准差系数,用CV(Coefficient of Variance)表示。
CV(Coefficient of Variance):标准差与均值的比率。
用公式表示为:CV=σ/μ
变异系数怎么计算
变异系数的计算方法:变异系数C·V=(标准偏差SD/平均值Mean)×100%。
变异系数只在平均值不为零时有定义,而且一般适用于平均值大于零的情况。变异系数也被称为标准离差率或单位风险。
变异系数作用:反映单位均值上的离散程度,常用在两个总体均值不等的离散程度的比较上。若两个总体的均值相等,则比较标准差系数与比较标准差是等价的。
变异系数公式:
变异系数=标准差/平均值。
1、一群蚂蚁的体重变动1克,自然要比一群大象体重变动1克的效果要大些。所以标准差一样时,平均值越大,其变异系数就越小,即代表性越强。
2、变异系数大,说明数据的离散程度也大;变异系数小,说明数据的离散程度也小。当进行两个或多个变量离散程度的比较时,如果单位和(或)平均数不同时,就需采用变异系数来比较。
以上内容参考:百度百科-变异系数
变异系数法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于变异系数法公式、变异系数法的信息别忘了在本站进行查找喔。
发表评论